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Figure 1: Battery Cloud is at the center of the success of the future battery

industry.

0.1 Introduction

Batteries have played an essential role in the rapid development of transporta-

tion electrification and energy storage system[1]. Lithium-ion batteries are

known for their high energy/power density and low self-discharge. They are

becoming more available as the manufacturing cost continues to improve. Large-

scale energy storage systems consist of MWh/GWh batteries that continuously

operate under different weather conditions. Electric vehicles batteries are sub-

ject to road harshness, different driving behavior, and frequent high C-rate fast

charges. These applications call for batteries to become more reliable, safe, and

predictable. As such, monitoring and control of Li-ion batteries become more

critical.

As of now, conventional onboard battery management systems (BMS) are

used for monitoring and control. A BMS includes embedded micro-controllers

(µC) and peripheral integrated circuitry (IC). Usually, the BMS collects voltage,

current, and temperature measurement with dedicated sensing ICs that commu-

nicates with a main µC, which process the measurements and perform various

functions, such as SOX estimation, diagnostics, protection, control, and ther-

mal management. Nevertheless, the micro-controllers are designed to handle

simple tasks and have minimal computing power and memory size. It prevents

the onboard BMS from executing advanced algorithms. For example, artificial

neural networks (ANN) are frequently used for SOC estimation[2]. As we will
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show later in this chapter, an onboard BMS might run a trained neural network.

However, the ANN must be carefully designed to reduce CPU and RAM impact.

Although the BMS receives numerous data from the measurements of hundreds

of cells that it monitors, these data are not stored due to the lack of onboard

data storage, making incremental learning impossible for the onboard BMS.

With the further development of IoT[3], future BMS is expected to be cloud-

connected (Battery Cloud). As a result, battery data can be seamlessly uploaded

and stored in a cloud data platform[4, 5], and the power of cloud computing

resources can be leveraged. The cloud computational power and data storage

can support advanced algorithms, such as machine learning algorithms improve

battery safety, performance, and economy. There are several significant advan-

tages. Firstly, the cloud database has battery data from not just one pack but

numerous EV/ESS battery packs, allowing a massive amount of data to be used

for extensive data analysis and machine learning. Secondly, cloud computing

allows complicated algorithms to be executed in real-time, which is not pos-

sible for onboard µC. Thirdly, the cloud platform allows data collection and

feedback from batteries throughout the entire life cycle. This means the other

batteries processes and applications also benefit from the battery cloud, such as

manufacturing, second life usage, and recycling.

In the remainder of this chapter, at first, critical components of a Battery

Cloud are discussed in the first section. Then, in the following sections, we

overview the critical areas regarding battery performance, health, and safety:

State-of-Charge estimation, State-of-Health estimation, and thermal runaway/anomaly

detection. We also present corresponding algorithms that developed with the

Battery Cloud. In the first section, we train and validate an artificial neural

network (ANN) to estimate pack SOC during vehicle charging using remote ve-

hicle data. The ANN is then implemented and tested by onboard BMS. It gives

high accurate (¡3%) real-life vehicle testing results. In the second section, high

accuracy(¡%5) and onboard battery state of health estimation (SOH) methods

for electric vehicles are developed based on the differential voltage (DVA) and

incremental capacity analysis (ICA). We extract the charging cycles and calcu-
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Figure 2: Key hardware and software components and data flow of the Battery

Cloud

late the DVA and ICA curves using cloud data. Multiple features are extracted

and analyzed to estimate the SOH. In the last section, a data-driven thermal

anomaly detection method is developed for battery safety. The method can

detect unforeseen thermal anomalies at an early stage, more than 1hr ahead of

the event.

0.2 Battery in the Cloud

This section covers essential components for a Battery Cloud, including the

database, data visualization, and algorithm/analytics.

0.2.1 Data Sources and Connections

Data are collected during different stages of the battery’s life cycle, ranging

from cell manufacture and module/pack assembly to vehicle driving/charging

and pack recycling. There are numerous procedures for cell manufacture alone,
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Table 1: Battery Data Sources

Item Stages Type of data

Cell manufacture

testing

manufacture metadata

battery timeseries data

Pack assembly

testing

assembly metadata

battery timeseries data

EV&ESS operating

service

battery timeseries data

vehicle/grid timeseries data

vehicle/grid metadata

service record

Charger operating charger timeseries data

Pack recycle recyle metadata

including electrode mixing, coating, laser cutting, stack, and so many others[6],

during which a significant amount of data is generated. Table 1 summarizes

battery-related data based on the different devices and scenarios. The EV bat-

tery pack is equipped with a BMS, a wireless IoT component that transmits

the collected data to the cloud via the 4G/5G network. These data will be

collected via the internet, online or private gateways for charging stations. Be-

cause ESS power plants affect grid stability, they are subject to more stringent

cybersecurity regulations. As a result, usually, ESSs are connected through a

one-way, local gateway to ensure maximum security. Similarly, battery data

from cell/pack testing equipment are uploaded via a secured, one-way gateway.

However, the equipment may be controlled securely via the company’s intranet.

0.2.2 Database

Choosing the right database For production big data platforms, Hadoop[7]

is the prevailing choice. Hadoop is based on HDFS (Hadoop files system)

and MapReduce (the programming model) that ensure good scalability, robust-

ness, and high availability, all of which are essential requirements for a battery
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database. Besides, Hadoop has a complete ecosystem, including software stacks

like Spark, Hbase, Kafka, Hive, and many others, making it easier to use and

expand functionalities. There are also dedicated timeseries databases (TSDB),

such as Influxdb, Timescale, and Prometheus. TSDB has built-in features for

timeseries data, such as time-domain queries (integration, differential), retention

policy, and others. This makes TSDB ideal for a small R&D battery database.

As TSDBs are being developed and improved actively, they will become more

competitive against traditional databases in the future.

Database deployment The database can be hosted on primes or on the

cloud. Although on-primes deployment will theoretically give better control and

security, it is often more expensive to maintain and scale. For cloud deployment,

there are several models to consider. Iaas (Infrastructure as a Service) let the

cloud provider handle hardware resources, where the company has complete

control of software stacks. Popular IaaS providers are Amazon Web Services

(AWS)[8], Microsoft Azure[9], and Google Cloud Platform (GCP)[10]. In the

PaaS (Data Platform as a Service) model, such as AWS EMR, the cloud provider

also hosts basic software stacks, except for application software. The provider

manages all software stacks in the SaaS (Software as a Service) model, such as

Cloudera[11] and Influxdata Cloud[12].

0.2.3 Data Visualization

Most end-users are data analysts or operators who monitor EV/ESS in real-

time. It is vital to have a responsive and interactive data visualization tool

where essential data are displayed in real-time. Users can create a dashboard

and add custom processing/query to explore statistical insights. Other features

include: 1) adding a signal threshold, which can trigger quick alarms to the

ESS site operator. 2) Options to trigger an ML pipeline from the frontend.

Widespread data visualization tools are web-based, such as Grafana, Datadog,

and Kibana. Figure 0.2.3 depicts an example battery data display dashboard.
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Figure 3: A typical dashboard for displaying battery data, developed by

Gotion[5].

0.2.4 Algorithms and Analytics

With the data platform built, advanced algorithms that leverage big data and

machine learning[2] can be applied to increase battery performance, safety and

economy. Another interesting topic is the digital twin [13]. Based on sophis-

ticated electrochemical modeling, the digital twin can give insight into the in-

ternal states of its physical twin. The battery cloud platform will need API

(application programming interface) for popular programming languages, such

as Python and Matlab, based on the developers’ preferences. It may also pro-

vide a more interactive computing platform like the Jupyter notebook/Lab,

commonly used for data analytics. After the algorithms/analytics are devel-

oped, they should be optimized and incorporated into a data processing engine,

such as Spark, Kafka, and Airflow. Life data of all the battery cells are used

to analyze the manufacture, assembly process, and facility to improve quality

management. Similarly, these data can be used as references during battery sec-

ond life application, recycling, and refurbishing, eliminating the need for extra

testing/calibration.
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0.3 Onboard SOC Estimation with Cloud-trained

ANN

State of Charge (SOC) estimation is one of the essential functions of battery

software. It has been researched extensively. There are mainly three different

methods for SOC estimation. The commonly used, basic method is coulomb

counting, which calculates the accumulated charge by current integral, given as

z(t) =
1

C

∫
i(t)dt+ z(0), (1)

where C is the battery capacity. This method is susceptible to accumu-

lated error generated from i(t) or data loss from z(0). As such, estimation

accuracy degrades if coulomb counting is used without correction over a pro-

longed period of time. The other two methods are model-based and data-driven.

Both have self-correction features to correct SOC. The model-based approach

utilizes a battery model, either ECM (equivalent circuit model) or electrochem-

ical model, to establish the connection between battery measurements, such

as voltage, temperature, and current, and immeasurable internal states. Then

an estimator, such as Kalman Filter, is applied to estimate the SOC. Because

those batteries are highly nonlinear systems, modified Kalman filters such as

extended Kalman filters and unscented Kalman filters are often used in prac-

tice. Model-based approaches require an accurate model. The model can be

calibrated accurately by long-term cell and pack testing. But it is also prone to

over-fitting, meaning it can not tolerate individual cell/pack variations. Making

an accurate and well-generalized model is very challenging and time-consuming.

Data-driven approaches range from simple voltage-based correction[14] to deep

neural networks[15]. More detailed reviews of data-driven SOC estimation meth-

ods are covered by [2, 16]. Most of these methods are resource-consuming and

can not be easily applied to an onboard BMS.

This section will present a data-driven SOC estimation method that fuses the

onboard BMS with the battery cloud. A neural network is firstly trained with
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Figure 4: The neural network model used for SOC estimation

cloud battery data. The neural network is designed to reduce its computational

and memory footprint to be fit into a micro-controller.

0.3.1 Requirements Definition and Design

When designing SOC algorithms, there are several typical requirements to be

considered. For example:

• SOC estimation should be 100% when the battery is fully charged.

• SOC estimation should not change suddenly, including power cycles.

• SOC estimation should have a maximum error of less than 5%.

• SOC estimation should have an average error of less than 3%.
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The neural network presented is designed to meet requirements #1,#3, and

#4. Other requirements, like #2 are implemented by a different software com-

ponent, such as the SOC initialization function.

As depicted in 4, the neural network includes an input layer, hidden layers,

and an output layer. The inputs are measurable battery signals, including

voltage, current, and temperature. Both present and historical measurements

are used. Historical measurements are critical for the feed-forward ANN to infer

the internal SOC of the battery, which is a dynamical system.

0.3.2 ANN Training with Cloud Data

The ANN is developed using Matlab/Simulink. Cloud battery data are fetched

through Matlab API and used to train the neural network. DC charging data

of LFP cells are used for training. The training data includes the cells being

charged at a range of temperatures, including -10°, 0°, 25°, 40°, and 50°, dur-

ing which the voltage and current signals are recorded. As depicted in Fig 5,

these data are split into training data (75%), validation data(15%), and test
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Figure 6: ANN training results

data (15%). During the training, Levenberg-Marquardt is configured as the

optimization algorithm. The training results are depicted in Fig 6.

After acquiring the parameters, the ANN is implemented as Matlab code

and integrated into the SOC software component, a Simulink model. Using the

embedded coder, the Simulink model is converted to C code, integrated with

other software components, and eventually become executable binaries.

0.3.3 HIL and Vehicle Testing Results

The ANN is first tested using the hardware-in-the-loop (HIL) system, during

which basic functions of the software component and SOC accuracy are eval-

uated using cloud data. More importantly, as the ANN executes in the BMS

real-time operating system (RTOS), the impact on CPU and RAM usage is

evaluated. It is found that the ANN takes approximately 50 µs of execution

time. Its RAM usage is also small.

Finally, the algorithm is tested on a vehicle BMS. The ANN is deployed as

a shadowing strategy in addition to existing software for several passenger EVs.

To verify its robustness, the ANN is tested under the AC charge scenario to
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Figure 7: Onboard Vehicle Test: AC charging

verify its robustness. Even though it is only trained with DC charge data, the

ANN performed satisfactorily during AC. For example, Fig 7 depicts the SOC

comparison, current, voltage, and temperature plots of one test. As shown in

the SOC comparison plot, for most of the time, the true SOC (solid blue) falls

into the +/-5% bracket of the SOC estimation (solid red). The RMSE of all

testing results is 1.9%, well below the 3% target.

0.4 Online State-of-Health Estimation

Li-ion batteries and many other secondary cells are subject to different degra-

dation mechanisms that lead to a loss of removable energy or power, which

lead to a decrease in range and acceleration for battery electric vehicle [17].

For that reason, it is essential to monitor the state of health of Li-ion batter-

ies. The degradation mechanisms are briefly discussed and organized into three

categories in the following section. Furthermore, the concept of the end-of-life
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(EOL) and the SOHC will be presented. Conclusively, an overview of SOHC

estimation methods will be given, with a closer look at the voltage analysis

(DVA) and the incremental capacitance analysis (ICA).

0.4.1 Degradation Mechanisms and Modes of Li-Ion Bat-

teries

The components of a Li-ion battery are subject to different degradation mech-

anisms. In general, the degradation mechanisms can be classified into three

modes [17, 18, 19]:

• Loss of Lithium Inventory (LLI): Li-ions are consumed by parasitic

reactions and are no longer available for cycling between positive and

negative electrodes.

• Loss of active material of the anode (LAMA): Active mass of the an-

ode is no longer available for lithium intercalation due to particle cracking

and loss of electrical contact or blockage of active sites by resistive surface

layers.

• Loss of active material of the cathode (LAMC): Active mass of

the cathode is no longer available for the intercalation of lithium due to

structural disorder, particle cracking, or loss of electrical contact.

These modes can be attributed to different degradation mechanisms in the com-

ponents of a Li-ion cell. In the following, the primary degradation mechanisms

on the components of a Li-ion cell are named and briefly explained. An overview

of these degradation mechanisms is presented in the figure8.

Anode The main degradation modes at the negative electrode are Lithium

Plating and the formation of solid electrolyte interphase (SEI). Lithium plating

is a commonly recognized and inherently damaging degradation mechanism in

Li-ion batteries, which describes the deposition of lithium metal on the sur-

face of the anode as soon as the anode potential exceeds the threshold of 0V
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(vs. Li/Li+) [20].On the other hand, the solid electrolyte interphase (SEI) is a

protective layer on the surface of the anode particles due to the decomposition

of the electrolyte, which is formed mainly during the first cycles [21]. Both

degradation modes are the main contributor for LLI and LAMA [17].

Cathode On the other side of the battery, the degradation modes of the

cathode are still growing in interest and therefore not thoroughly documented

yet. It is considered that structural changes and mechanical stress are the main

contributors to LLI and LAMC. Due to various cathode materials, the Li-

ion battery suffers from different side reactions based on the cathode material

composition. For example, an Mn-based cathode is more prone to the dissolution

of the active material due to Mn dissolution. In contrast, the degradation of

the LFP cathode is more likely to be defined by Fe dissolution, which generates

HF as a by-product and attacks the surface of the cathode particles [20].

Separator, Electrolyte and Current Collectors The separator, the elec-

trolyte, and the current collectors are also subject to various degradation mech-

anisms. The porous separator of a Li-ion cell, although electrochemically inac-

tive, can significantly affect the performance of the Li-ion cell. Aging studies

have shown that deposits from electrolyte decomposition clog the pores of the

separator, which leads to an increase in ionic impedance and can also reduce

the accessible active surface area of the electrodes (LAMA and LAMC, respec-

tively) [18, 22]. On the other hand, the electrolyte is involved in decomposition

reactions leading to surface film formation on both electrodes. Since the con-

centration of the conducting salt determines the ionic conductivity between

the two electrodes, the decomposition reactions affect the ohmic resistance of

the Li-ion cell. Electrolyte reduction at the anode consumes cyclizable lithium

(LLI) and results in a loss of capacity. In contrast, electrolyte oxidation at the

cathode does not consume cyclizable lithium but causes re-intercalation into

the cathode, corresponding to the cell’s self-discharge [23, 24]. There are two

main degradation mechanisms for the current collectors of a Li-ion cell. First,
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Figure 8: Degradation mechanisms in Li-ion cells [17]

the current collectors can corrode electrochemically. This occurs particularly at

the aluminum collector of the positive electrode when acidic species, such as.

HF, are present and leads to increased contact resistance between the current

collector foil and the active material of the cathode [25]. The copper current

collector of the negative electrode may dissolve during deep discharge when the

anode potential increases to 1.5 V concerning Li/Li+ [26]. Second, the current

collector foils may deform due to mechanical stress. This can disrupt the con-

tact between the electrodes and the separator so that certain areas can no longer

contribute to the cell’s capacity [27].

Based on the figure 9, it can be seen that all degradation modes can be

organized by their effect on the electric characteristics of a Li-ion battery, the

capacity, and power fade. For further elaborations, we will focus primarily on

the capacity fade.

0.4.2 State-of-Health & End-of-Life

Due to the degradation mechanisms, Li-ion batteries have a limited lifetime.

The end of life (EOL) of a Li-ion battery is reached when the battery can no

longer provide the power or energy intended for its application [28]. However,
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Figure 9: Overview of different degradation mechanisms and their impact

adapted from Birkl et al. [17]

as of today, there is no uniform standard that defines a clear EOL criterion

for Li-ion batteries in the automotive industry [23]. The USABC consortium

is the only one to define two EOL criteria in its manual of test procedures for

electric vehicle batteries. According to this manual, the EOL of a Li-ion battery

is reached when:

• the net capacity delivered is less than 80% of the rated capacity CN or,

• the peak capacity is less than 80% of the rated capacity at a DOD of 80%

[29].

Also, in many publications, the EOL for the Li-ion-based traction battery of

a BEV at a capacitive aging condition of SOHC ≤ 80% assumed [30, 31, 32].

The capacitive aging state SOHC can be calculated using equation 2. Here,

CN corresponds to the nominal capacity of the Li-ion battery, and Qdis,max

corresponds to the maximum charge quantity that can be removed from a Li-
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ion battery, which is also known as the net capacity.

SOHC =
Qdis,max

CN
· 100% (2)

0.4.3 Advanced Online SOH-Estimation Methods

The capacitive aging state SOHC has an impact on two critical factors of a

BEV, the maximum range and the charging time during fast charging. Based

on the capacitive aging state SOHC, the maximum range can be predicted to the

driver, and the fast charging function can be adjusted to find the optimal com-

promise between minimum charging time and damage of the anode by lithium

plating [33]. Therefore, an online SOHC estimation is essential for automotive

applications.

Figure 10: Methods for SOHC estimation adapted from Xiong et al. [34]

Methods

There are several options for determining the capacitive aging state, which can

first be divided into experimental and model-based methods, respectively. As
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shown in Fig. 10, these categories can be subdivided into further subcategories.

For example, experimental methods can be divided into direct methods, such as

capacity measurement (Coulomb counting), and indirect methods, such as dif-

ferential voltage analysis. In contrast, model-based methods can be divided into

SOHC determination based on adaptive battery models or data-driven methods.

At this point, the most popular methods regarding the capacitive aging

condition SOHC are mentioned and briefly discussed. More detailed summaries

about methods for SOHC estimation were given by Berecibar et al. [35] and

Xiong et al. [34].

Direct measurements are the most straightforward method to determine

the SOHC. One prevalent method is the direct measurement of the current

battery capacity. However, this method requires an enormous expenditure due

to the low charging current during the capacity measurement, which is why this

method is only used for R&D purposes.

Model-based estimation methods utilize algorithms like Kalman Filter or

Neural Networks to model the battery cell parameters. These methods achieve

relatively high accuracy and can be implemented in a Cloud-BMS. Yet, these

algorithms require a high development effort. For example, the accuracy of the

Kalman filter is highly dependent on the accuracy of the applied battery model,

whereby high accuracy is only achieved with complex battery models. Also,

training a neural network requires a large amount of data, which can only be

generated by cost-intensive testing of battery cells. In addition, these algorithms

need extensive validation. For example, the neural network is considered a black

box, and the output can not be generally predicted based on unexpected input

data.

Indirect analysis methods utilize various battery parameters to correlate

the capacity fade with various features of the Li-ion battery. For example, the

charge curve can characterize the SOHC of the battery as it changes throughout
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the battery degradation. Constant current followed by constant voltage with

current limiting (CCCV) charging mode is commonly used for batteries. Edda-

hech et al.[36] developed a method for SOHC estimation using the CV stage as

a health indicator. Since minimal intrinsic information about the battery can

be obtained directly from the voltage curves, Dubarry et al. [37, 38], for exam-

ple, used electrochemical characterization and analysis techniques, incremental

capacitance analysis (ICA), and differential voltage analysis (dV/dQ) (DVA).

These methods are often applied in laboratories since a low current rate is re-

quired to record these differential curves. However, due to the increasing energy

of the battery packs and the lower power of AC charging, it is also possible to

record the differential curves during an AC charging process in a BEV. For this

reason, the basics of the DVA and ICA and their correlation with capacity fade

will be discussed in more detail below.
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Figure 11: The differential curve of ICA during a CC charge with C/10 of a

Li-ion battery consisting of a graphite anode and NMC cathode.

DVA/ICA-based SOH-Estimation Method As mentioned before, it is

essential to estimate the SOHC of battery packs in BEV. In the following section,

a DVA and ICA-based estimation method is introduced. Therefore, the DVA

and ICA will be presented and discussed in detail to present a simple SOH-

estimation implementation, which could be realized on a cloud platform.

The DVA and ICA are commonly known analysis methods for Li-ion bat-
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teries in laboratories. IC curves can be calculated by integrating the capacity

corresponding to small voltage intervals (dQ/dV) by charging or discharging the

battery at minimal current rates (see equ. 3). This process converts the voltage

plateaus of the two-phase transition into detectable IC peaks. Another method

of obtaining more information about aging by processing voltage waveforms is

differential voltage analysis (dV/dQ) (DVA). The distance between two peaks of

the DV curve represents the amount of current involved in the two-phase tran-

sition, so it is easier to analyze capacitance degradation using the DV curves

quantitatively [39].

dQ

dV
≈ Q(t)−Q(t− 1)

V (t)− V (t− 1)
(3)

dV

dQ
= (

dQ

dV
)−1 ≈ V (t)− V (t− 1)

Q(t)−Q(t− 1)
(4)

The result of calculating the difference curves during a low current rate charging

process is shown in Figure 11. It should be noted that the DV curves can be

represented using the half-cell potentials due to the superposition behavior of

the anode and cathode (see Eq. 4). Thus, the peaks and valleys of the DV curve

can be assigned to the anode and cathode, respectively.

As mentioned before, Li-ion batteries suffer from various degradation mech-

anisms, which lead to LLI, LAMC and LAMA. Due to these degradation modes,

a change in the DV and IC curves can be observed. Figure 12 shows the shift

of the DV curve due to cyclic aging. In both graphs, the peaks and valleys

shift due to structural changes in the electrodes. Based on the change of these

features, the SOHC can be estimated by correlation, for example, the distance

between two peaks in the DV curve with the capacity fade of the Li-ion battery.

Another possible feature is the height or depth of the peaks or valleys of the IC

curve, which also shift throughout the ongoing degradation of battery materials.

DVA/ICA-based SOH estimation on a Battery Cloud includes the following

workflow:
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Figure 12: The course of the different curves of the (1) DVA and (2) ICA

during a C/3 charge from the beginning of life (BoL) to the end of life (EoL) of

a cyclically aged Li-ion battery (graphite anode/NMC cathode).

1. The platform monitors the typical battery cell parameters, voltage, cur-

rent, and temperature.

2. Whenever the battery is charging, it determines if the charging data has

satisfied feature detection based on several conditions. The conditions

include the C rates, amount of charge, and so on.

3. If the conditions are met, proceed with the following steps. Otherwise,

abort and watch for the next window.

4. Calculate and filter the differential curves (dV/dQ) based on the measure-

ments.

5. Apply feature detection algorithm, i.e., a peak detection algorithm, to

extract the features. Based on the scenarios, different features may be
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Figure 13: Correlation between DVA/ICA features and real SOHC, based on

various temperatures and C-rates.

extracted and used. Since the features themselves do not indicate the

SOHC, they will be further processed.

6. Apply a mapping function that relates the features with the SOHC. Typi-

cally, the reference is represented by a Look-Up-Table (LUT) that is based

on the correlation between features and SOHC, extracted from existing

cyclic aged battery data.

As depicted in Fig 13, the real SOHC has strong correlations with DVA/ICA

features. For example, the distance of peak to peak or peak to valley. The

correlations also depend on the temperature. Higher charging currents will

affect the estimation accuracy. However, this method can generally achieve 5%

SOH accuracy when charging at 3C or less.

0.5 Cloud-based Thermal Runaway Prediction

0.5.1 Cause and Effects of Thermal Runaway

One significant disadvantage of batteries is the narrow operating temperature

range. The safety and stability of the battery cells are dependent on keeping
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Figure 14: Thermal Runaway explanation based on heat generation and dissi-

pation models[40]

interior temperatures under certain limits. A thermal runaway can occur if

the temperature surpasses the critical level, killing the battery or, even worse,

causing a fire. Thermal runaway is a chain reaction that can be very difficult

to stop once it has begun within a battery cell. During a thermal runaway, the

temperature rises incredibly fast (milliseconds), and temperature can be higher

than 752°F/400℃. At such elevated temperatures, electrolytes in the battery

cell can be vaporized and combustive when exposed to oxygen. Such battery

fires are hard to extinguish with conventional ways.

The heat generated by the electrochemical reactions is critical as it can lead

to thermal runaway. The heat generation is caused by chemical/electrochemical

reactions and joule heating inside the battery. Radiation and convection dissi-

pate heat to the surroundings. The process of thermal runaway can be explained

by the plot Fig. 14. The heat generation because of an exothermic reaction as-

suming Arrhenius law, an exponential function, is shown in curved line 4. In

comparison, the heat dissipation is represented by straight lines, which follow

Newton’s cooling law at different coolant temperatures. For the lithium-ion bat-

tery, curve 4 is the combined results of reactions in the cell during the thermal

runaway process and the energy balance between the heat generation. Heat
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Figure 15: Abuses that cause thermal runaway [41]

dissipation is shown as the following equation Eqn. (5)

∂ (ρCpT )

∂t
= −∇(k∇T ) +Qab−chem +Qjoul +QS +QP +Qex + · · · , (5)

where ρ
(
gcm−3

)
is the composite/average density of the battery, Cp

(
Jg−1 K−1

)
the composite/average heat capacity per unit mass under constant pressure,

T (K) the temperature, t(s) the time, k
(
Wcm−1K−1

)
the thermal conductivity.

Qab−chem the abuse chemical reaction in the battery, Qjoul Joule heat, Qs the

entropy heat, QP the overpotential heat, and Qex the heat exchange between

the system and the ambient.

Generally, thermal runaway can be triggered by various types of abuse in a

battery shown in Fig. 15 [41], including:

Internal short circuit Internal short circuit caused by physical damage to

the battery or poor battery maintenance.

Mechanical abuse Vehicle collision and consequent crush or penetration of

the battery pack are the typical conditions for mechanical abuse.

Electrical abuse
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• Overcharging: the voltage that exceeds the maximum safety operation

voltage range will damage the battery and lead to thermal runaway. Be-

cause of the extra energy filled into the battery during overcharge, the

overcharge-induced TR can be more severe than other abuse conditions.

• Rapid charging can lead to excessive currents, therefore, causing thermal

runaway

• External short circuit: External short circuit happens when the electrodes

with voltage difference are connected by conductors, which could also kick

off the TR chain reaction.

Thermal abuse

• Over/Under temperatures: either the low or high side of the safety ranges

degrades battery health, leading to irreversible damage that may eventu-

ally trigger the TR reaction.

• Contact loose of the cell connector can lead to overheating.

0.5.2 Methods for Thermal Runaway detection

For the typical applications of batteries, including micro-grids and Electric Ve-

hicles, they are connected and packed in modules and packs. Suppose one or

a few batteries experience thermal runaway due to the limited space for heat

exchange. In that case, the heat will rapidly go up, leading to thermal runaway

propagation among all surrounding batteries. Therefore, it’s essential to detect

thermal runaways at an early stage to ensure operation safety. Lithium-ion bat-

teries may experience a voltage and current anomaly, a temperature rise, or a

gas venting during a thermal runaway process. Those are the indicators that

can be detected at the early stage of thermal runaway to ensure the operation

safety of batteries[42]. Methods of thermal runaway detection include:

Terminal voltage The terminal voltage can be detected by using voltage

sensors within the battery management system.
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Mechanical deformation Mechanical deformation can be detected by creep

distance sensors.

Internal temperature Since the core temperature directly represents the

thermal condition within batteries, it can be either:

• measured by temperature sensor inserted in the batteries

• estimated in terms of the measured surface temperature of batteries

Gas component Some gas components can be identified during the thermal

runaway process, such as Carbon monoxide, hydrocarbons, and Hydrogen. Gas

sensors like thermal conductivity detectors (TCD) can be used for this purpose.

0.5.3 Data-driven Thermal Anomaly Detection

Here we give a cloud-based and data-driven method that monitors the shape-

similarities across the measurements to detect battery thermal anomalies[43].

It is robust to battery aging or environment variations since cells are likely to

deteriorate or be influenced by these variations as a whole. The shape-based

distance measurement handles the asynchronous data issue, which is invariant

to signal shifting. Furthermore, this method can be applied to different con-

figurations since it needs very little reference data. This method is based on

K-shape clustering[44]

SBD(~x, ~y) = 1−max
ω

(
CCω (x,y)√

R0 (x,x)R0 (y,y)

)
, (6)

where ~x, ~y are the normalized time-series measurements, and R0 the Rayleigh

Quotient.This algorithm has two steps per iteration, repeated until convergence

or max iteration is reached.

Workflow

As depicted in Fig. 16, the proposed anomaly detection method contains the

following steps. At first, data is continuously buffered and segmented. During
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the preprocessing stage, invalid/faulted data points are removed. Signals are

normalized. Segments with static signals are filtered out.During the Anomaly

Confirmation stage, the K-shape algorithm is applied to each segment for the

distances (SBD(xi, cj)) for each cluster. Two criteria are used for determin-

ing anomaly. 1) If one or multiple measurements change its membership, it

indicates an anomaly. 2) When no change was found in cluster membership,

we check for a significant increase in fitting errors. During each iteration, the

ith cluster is compared to the reference cluster for capturing the accumulated

changes associated with anomalies that developed gradually. For example, a
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thermal anomaly is caused by the battery’s increased internal resistances. It’s

also compared to the predecessor for anomalies that developed abruptly, such

as short-circuit. In the final stage of Anomaly Isolation, we use the change of

membership or increase in fitting error to isolate the signals that have caused

the anomaly.

Case Study

We apply the proposed anomaly detection method to an EV battery. The data

was collected and transmitted from an onboard BMS. As depicted in Fig 17(a),

on Oct 30th, the temperature near sensor #13 increased to over 70 ℃. The

onboard BMS detects the over-temperature anomaly around 3:45 pm, when the

maximum temperature is over 55 ℃. The proposed method detects anomalies

around 2:15 pm, which is about 90 minutes earlier. The timing difference be-

tween the two methods is illustrated in Fig 17(b). As it shows, the proposed

method detect the anomaly when sensor #13 just started to behave differently

from the other measurements. Fig 17(c) shows a shape plot of the segment

when the anomaly is detected. In this figure, #13 is flagged as the outlier for

its rising shape.
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Figure 17: Test Case (a) temperature measurement data with the over-

temperature fault. (b) The zoom-in view of fault, this method detects the tem-

perature anomaly 90min before it surpasses the threshold. (c) Further zoom-in

view of the segment’s shapes plot where the anomaly is detected, which is also

highlighted with blue in (b)
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