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Abstract— For electric vehicles (EV) and energy storage (ES)
batteries, thermal runaway is a critical issue as it can lead
to uncontrollable fires or even explosions. Thermal anomaly
detection can identify problematic battery packs that may even-
tually undergo thermal runaway. However, there are common
challenges like data unavailability, environment variations, and
battery aging. We propose a data-driven method to detect
battery thermal anomaly based on comparing shape-similarity
between thermal measurements. Based on their shapes, the
measurements are continuously being grouped into different
clusters. Anomaly is detected by monitoring deviations within
the clusters. Unlike model-based or other data-driven methods,
the proposed method is robust to data loss and requires minimal
reference data for different pack configurations. As the initial
experimental results show, the method not only can be more
accurate than the onboard BMS, but also can detect unforeseen
anomalies at the early stage.

I. INTRODUCTION

A. Background

Conventional anomaly detection methods for batteries usu-
ally depend on thresholds or lookup tables, often determined
by lab-testing of sample batteries, and may not apply to the
individual battery that operates under different conditions.
On the other hand, advanced anomaly detection methods,
such as machine learning-based algorithms, require signif-
icant computational resources. Traditional battery manage-
ment systems (BMS) deployed on electric vehicles or energy
storage systems are based on embedded micro-controllers,
which lack computing power or memory to execute these
algorithms on-board.

For a cloud-based BMS, the gathered data is transmitted to
a data-center for further analysis, during which advanced al-
gorithms can be utilized. As a part of the fault diagnosis pro-
cess, anomaly/fault detection is the most critical step. Based
on timely detection, the BMS or vehicle controller (VCU)
of the EV can take proper actions, which prevent a relative
small issue from developing into a server problem. There
are three mainstream methods for battery fault/anomaly de-
tection: knowledge-based, model-based, and data-driven[1].
The threshold-based method, which is the industry’s standard
practice, can be categorized as knowledge-based. In general,
every battery manufacturer has its own heuristic ”recipe”
combined with testing data and engineering known-hows,
which can not be generalized easily. Model-based approaches
often include a physical model and an estimator[2]. In [3],
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Fig. 1: Typical issues of thermal measurements for cloud-
BMS data. This figure is based on fleet EV battery data.

a lumped battery thermal model with time-variant internal
resistance, altogether with an adaptive observer, are used to
estimate the core battery temperature. [4] uses a cell differ-
ence model with an extended Kalman filter to estimate the
micro-shot-circuit current, which can be used for short circuit
diagnosis. Some of the data-driven approaches depend on the
recurrent neural network[5], [6]. For example, [5] uses a long
short-term memory neural network to create residual signals
for battery surface temperatures. A thermal fault is set when
the residual is over a certain threshold. For model-based
approaches, training data is needed for finding the optimal
model parameters for different types of batteries, making it
difficult and time-consuming to be implemented. Besides,
data anomalies like long-time unavailability and shifting can
cause the model to malfunction. Relatively speaking, training
recurrent neural networks requires fewer efforts. However,
the neural network also depends on the continuous signal
influx. For both methods, battery degradation over time poses
a challenge. In conclusion, the following common issues still
pose significant challenges for battery anomaly detection.

• Loss of data/invalid data: For cost-saving, some wire-
less transmission modules in BMS or vehicles usually
use less reliable networks such as 3G or even 2G.
Due to network issues, loss of data or invalid data is
common. As depicted in Fig. 1, it may happen just
intermittently or for an extended period. Data is also not
available when the vehicle is shut down. Model-based
approaches, such as Kalman filters and recurrent-neural
networks, have internal states that rely on continuous
data input. They may tolerate intermittent data loss, but
long-term data loss will cause the model to lose track
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and give inaccurate results.
• Asynchronous data: Because of communication or sen-

sor issues, one or several signals may be sampled
with some time-delay. Residual-based methods, which
evaluate all signals at the exact moment, is likely to
generate false positive with asynchronous data.

• Battery aging: As the battery ages and deteriorates, the
thermal and cell voltage measurement will deviate from
their nominal range. Both residual and model-based
method needs to adjust the threshold and parameters
for them to work correctly. However, estimating the
battery’s state-of-health (SOH) itself is a challenging
task[7].

• Environment variations: The environment variations,
such as different geo-locations, sensor locations, and
seasonal temperature changes, cause similar difficulties
as battery aging. But they are more hard to be factored
in the model.

• Lack of training data: Electric vehicle and energy
storage systems have different configurations. It is chal-
lenging to train the model so that it can adequately
identify anomalies for all configurations. A tailored
model is more accurate but is challenging to implement.
Besides, labeled data may not be available for some
configurations.

B. The proposed method
To address some of the challenges mentioned above,

this paper proposes a data-driven, model-free approach that
monitors the shape-similarities across the measurements to
detect battery thermal anomalies. The proposed method does
not require the data to be continuous, making it robust to data
loss and invalid data. The same reason also alleviates the
effects of battery aging or environment variations since cells
are likely to deteriorate or be influenced by these variations
as a whole. Asynchronous data issue is handled by the shape-
based distance measurement, which is invariant to signal
shifting. Furthermore, this method can be applied to different
configurations easily since it needs very little reference data.

Clustering is an unsupervised learning algorithm that does
not require training with labeled data. Therefore, this method
can detect unforeseen anomalies. Unlike the existing cross-
similarity approaches[8], the proposed method does not need
feature extraction. Also, comparing shapes(which is scaling-
invariant) instead of values allows it to capture abnormality at
the early stage. Therefore, this new method has the potential
to give early warnings.

II. THE ANOMALY DETECTION METHOD

A. The K-shape Clustering Algorithm
Proposed by[9], the K-shape clustering algorithm is in-

tended to be used for time-series analysis. It adopts a
cross-correlation sequence (CCω (x,y)) to determine signal
similarity. The shape-based distance function is given as:

SBD(~x, ~y) = 1−max
ω

(
CCω (x,y)√

R0 (x,x)R0 (y,y)

)
(1)

Fig. 2: The Proposed Methodology

where ~x, ~y are the normalized time-series measurements,
and R0 is the Rayleigh Quotient. The overall K-shape algo-
rithm has two steps per iteration, repeated until convergence
or max iteration is reached. In the first step (assignment),
measurements are assigned to each cluster based on their
similarity to the centroid. In the second step (update), the
clusters’ centroids are updated. The overall time complexity
O
(
max

{
(ncm)log(m), nm2, cm3

})
scales linearly with

the number of measurements(n) and the number of clus-
ters (c) but increase noticeably with the number of time-
steps (m). K-shape has been applied to time-series analysis
and forecast[10], [11], [12], including battery cell voltage
monitoring[13].

B. Assumptions and Limitations

Similar to the advantages are given above, the proposed
method relies on some assumptions and has its limitations.

1) The battery pack initially operates normally: We use
the original operational data to acquire the reference
cluster membership. It is worth mentioning that the
proposed method only needs a small size of measure-
ment data to extract the infomation. For example, in
Section III, only 4 minutes of normal operation data is
used.

2) The anomaly does not occur in all measurements in
the same manner: In theory, anomalies can cause no
deviation in the measurement clustering if they affect



Algorithm 1: a[k], p[k] = AnmlyChk(mem[k],dist[k])

Input: membership and distance for the kth segment,
which has c clusters (mem[k],dist[k])

Output: anomaly indicator and confidence level for
the kth segments (p[k], d[k])

// initialization
a[k] = False
p[k] = 0
// initialization
for mem[k][i] in mem[k] do

if mem[k][i] 6= mem[k − 1][i] then
a[k] = True
return (a[k], p[k])

end
for dist[k][i] in dist[k] do

if dist[k − 1][i] > ε // avoid
zero-division

then
p[k]+ =

(1− α) · sat
(

dist[k]
dist[k−1]

)
+ α · sat

(
dist[k]
dist[0]

)
else

p[k]+ = sat
(

dist[k]
dist[0]

)
end
return a[k], p[k]

all measurements simultaneously and in the same way
without disrupting the existing cluster memberships.
Under such circumstances, the proposed method would
not be effective. However, it is unlikely to happen in
real-life. A typical anomaly first appears only in one
or a few measurements and can be detected by the
proposed method.

C. Methodology

As the flowchart depicted in Fig. 2 , the proposed anomaly
detection method contains the following stages:

1) Segmentation/buffering: For offline implementation,
existing data is segmented into smaller pieces, each
of which will be clustered accordingly. For online
implementation, data should be continuously collected
and buffered as a segment, which is then processed.
Because the K-shape’s time complexity grows notice-
ably as the number of samples increase, segment size
should be limited based on the sampling rate and data
type. For example, temperature measurements tend
to changes slower than voltage measurements and a
thermal fault typically takes a longer time to develop
than a voltage anomaly does. Therefore, temperature
measurement may need larger segments than voltage
measurement.

2) Cleaning: In this stage, invalid data points, like those
that are out of the sensor’s measurement range, are
removed. However, there is no need to fill in the
missing data due to this method’s advantage.

3) Preprocess: This stage includes filtering and data nor-
malization. Segments where all signals do not show
noticeable dynamics (changes) are excluded from the
clustering process.

4) K-shape: In this stage, the K-shape algorithm given in
equation 1 is applied to the segment.

5) Anomaly Confirmation: Details of the confirmation
algorithm are given in Algorithm 1. We look at two cri-
teria. Firstly, if one or multiple measurements changed
its membership, it indicates an anomaly(a[k]). If there
is no change in cluster membership, we check if there
is a significant increase in fitting errors/distance(p[k]).
The following total distance function[14] is used:

dist =
1

n

∑
i∈n

(
min

j

(
SBD2(xi, cj)

))
(2)

As depicted in Fig 2, during an iteration for the kth
segment, each cluster (i) is compared to the reference
cluster (dist[0]) and the previous cluster (dist[k− 1]).
The first part is for capturing the accumulated changes
associated with anomalies that developed gradually.
For example, thermal anomaly due to battery’s in-
creased internal resistances. The second part is for cap-
turing incremental changes associated with anomaly
that developed abruptly, such as a thermal anomaly
caused by short-circuiting.

III. EXPERIMENTAL RESULTS

A. Database and data sources

The R&D team at Gotion has built a cloud-based bat-
tery data platform. The data platform receives and cleans
battery data from different sources such as fleet vehicles,
onboard tests, and lab tests. Afterward, it is uploaded to a
time-series database. There are also software modules for
data-visualization, battery simulation, and analysis. Most of
the algorithms are implemented in Python. The proposed
method is applied to battery data collected from fleet vehicle
batteries between 2019 and 2021. The data sampling rate is
about 0.1 Hz. There are different types of battery chemistry
(LiNiMnCo and LiFePO4), pack configurations, and ve-
hicle types.

TABLE I: Description of the Vehicle Battery Data

field names data type value range source

cell voltage double (0,5) V BMS
temperature double (-50,100) C BMS
pack current double (-500,500) A BMS
battery faults bool [0,1] BMS
battery status enum - BMS

B. Initial results and discussions

In this section, the testing results of two different battery
packs are presented and compared to the fault detection
based on the on-board BMS. The proposed algorithm is
implemented in Python and deployed on a cloud computing
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Fig. 3: Case I: (a) Thermal measurement data with the over-temperature fault. (b) The zoom-in view of fault occurrence,
notice a temperature anomaly is detected by the proposed method 90min before it surpasses the threshold. (c) The plot of
measurement shapes for the segment in which the anomaly is detected.

platform (AWS). For the following testing results, the seg-
ment size is set to 25, equivalent to 4.1 min. Notice that
both cases have intermittent and longtime data losses. In
the following figures, the data gaps are connected for better
visualization.

1) Case I: In the first case, the proposed method is
applied to a battery pack (LiFePO4) that undergoes an over-
temperature anomaly. As depicted in Fig 3a, on Oct 30th,
the battery’s temperature near sensor #13 rises significantly
to over 70 C. While both the proposed method and BMS
are able to flag the anomaly, the new method is more than
90 min earlier. The detailed timing difference between the
two methods is illustrated in Fig 3b. As the figure shows,
the BMS reports an over-temperature fault at 3:45 PM when
the maximum temperature is over 55 C. On the other hand,
the proposed method send an anomaly warning around 2:15
pm, just when sensor #13 start to depart from the rest of
the measurements. Fig 3c shows a shape plot of the segment
where the anomaly is detected. Clearly, one of the signal’s
(#13) rising shape stands out from the rest. As signal #13
continues to grow, its shapes for the following segments
become less steep. Therefore, the confident level (d[k]) is

the largest at the beginning of the anomaly. This explains
why the new method can send early warnings. In conclusion,
case I validates that the proposed method can send an early
warning for battery over-temperature faults.

2) Case II: The second case is from an EV with
a two-pack configuration, in which two battery packs
(LiNiMnCo) are installed in different locations inside the
vehicle. As a result, the thermal measurements behave very
differently. As Fig 4 shows, the temperature difference be-
tween the two packs grows noticeably in 8:00-9:00 AM and
in 1:00-2:00 PM, when a large current is discharged from the
battery. In both cases, the onboard BMS reports thermal fault
despite that there is no real anomaly. The reason is that the
on-board BMS uses hard thresholds from a look-up table.
Also depicted in Fig 4, the proposed method successfully
recognizes two clustering groups, including {1, 3, 5, 7} and
{2, 4, 6, 8} and does not report any anomaly since there is no
discrepancy found with the cluster groups. This testing case
shows that compared to BMS, the proposed method is more
robust to variations caused by the pack design and sensor
location.
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Fig. 4: Case II: (a) thermal measurements and (b) current for
a two-pack battery. Notice the temperature difference grows
under large current loads.

IV. CONCLUSION AND FUTURE WORK

In this paper, we identify common issues in the field of
cloud-based battery anomaly/fault detection. Then, a method
based on unsupervised shape-clustering is proposed for de-
tecting battery thermal anomalies. The proposed method does
not depend on a model or large training data. It also has
several unique advantages, such as the resilience to data loss
and the capability of early detection. Two test cases based on
real vehicle data are studied. In one case, the new method
is found to be more accurate than the BMS when applied
to a multi-pack vehicle. In the other case study where a
battery over-temperature fault occurs, the proposed method
is capable of flagging the anomaly at the very early stage,
more than 90 min ahead of the BMS.

Future works include the following. Firstly, this method
is being currently tested on large data sets. The rate of false
positives and false negatives needs to be investigated and
compared to the BMS. Secondly, detection accuracy can be
further improved by making use of another measurement
signals like BMS status and cell voltages.
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